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On the K13 surface-like elastic constant 

An experimental method to test different theoretical models 

by S. FAETTI 
Dipartimento di Fisica dell'universita di Pisa and Consorzio Interuniversitario di 

Fisice delle Materia, Piazza Torricelli 2, 56100 Pisa, Italy 

(Received 30 April 1993; accepted 18 July 1993) 

Oldano and Barbero showed that, due to the presence of the surface-like elastic 
constant K , ,  in the expression of the elastic free energy density, F,,  in a nematic 
liquid crystal, the functional F ,  is unbounded from below and thus it is impossible 
to find an equilibrium director distortion. In particular, they showed that the 
surface-like elastic constant favours a discontinuity of the director-field at the 
interfaces. In recent years two quite different theoretical approaches have been 
proposed to eliminate the mathematical difficulties related to the K ,  problem. 
Barbero et al., expanded the free energy functional F up to the fourth order in the 
director derivatives and showed that the minimization problem becomes math- 
ematically well posed. A strong subsurface director distortion on a length scale of 
the order of the molecular length is predicted by using this approach. This point has 
been critized by V. Pergamenshchik who considers the subsurface strong distortion 
as an artefact of theory and proposes an alternative method to account for the effect 
of K13.  This method is virtually coincident with that already proposed by Hinov on 
the basis of an a priori assumption. In this paper we discuss some direct 
consequences of these two different approaches and we propose two simple 
experimental measurements which should lead to different results depending on 
which model is the correct one, allowing in this way a test of the different theoretical 
models. 

1. Introduction 
The macroscopic behaviour of a nematic liquid crystal (NLC) is described by the 

director n which denotes the average molecular orientation. The space variation of the 
director can be obtained by minimizing the Frank elastic free energy [l]. In 1971 
Nehring and Saupe [2] showed that a new term must be added to the free energy. This 
new contribution, proportional to the surface-like elastic constant K,,, explicitly 
contains second-order derivatives of the director and thus, behaves as a surface free 
energy contribution. In 1985, Oldano and Barbero [3] showed that due to this new 
surface contribution, the free energy is unbounded from below so that no minimum of 
the free energy can be found. Therefore, the probem of finding the correct director-field 
in the NLC is not well posed if the surface contribution is present. The same kind of 
mathematical difficulty arises if the surface free energy depends explicitly on the first 
surface derivative of the director. In all these cases, a discontinuity of the director-field 
at the interfaces is expected to exist [4-6). Barbero et a/. [7-81, showed that the free 
energy becomes bounded from below if higher order terms up to the fourth order in the 
director derivatives are retained in the expression of the bulk free energy density. In the 
following, according to Barbero et al. we will denote this theory as the second order 
elastic theory. In this case, the free energy is shown to have a minimum in 
correspondence to a well-defined director distortion. The director-field is thus 
represented by a continuous function, but it exhibits a sharp variation close to the 
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808 S. Faetti 

interfaces within a thickness of the order of the molecular length. The main efSect ofthis 
subsurface distortion is a large apparent reduction of the surface anchoring energy 
coefficient W Anyway, the above solution of the problem cannot be considered as 
definitive. In particular: 

(i) A power expansion of the free energy as a function of the director derivatives is 
justified only if the length scale of director distortion is much higher than the 
molecular scale length. Therefore a correct analysis of strong subsurface 
distortions should be made by using microscopic theories of molecular 
interactions close to the interface. 

(ii) Very close to the interfaces, the free energy density can differ largely from the 
bulk expression. In particular, the elastic constants become position- 
dependent and new elastic contributions must be considered [9]. 

(iii) The second order free energy density introduces new higher order surface 
contributions which are neglected but which, in principle, still make the free 
energy unbounded from below. 

More recently, Barber0 et al. [9], reanalysed the problem by accounting also for the 
spatial variation of elastic constants near the interfaces and for the symmetry breaking 
due to the presence of the interface by retaining an elastic form for the free energy near 
the interfaces. Also this analysis shows that all these subsurface elastic effects are fully 
equivalent to a renormalization of the anchoring energy. Therefore, they conclude that 
one can completely disregard the K, ,  elastic constant in the expression of the bulk free 
energy and account for its effects by defining a new effective anchoring potential. 

A very different solution to the problem of the surface-like elastic constant K, ,  has 
been proposed by Hinov [lo-111 which makes the a priori assumption that 
discontinuities of the director-field at the interfaces are unphysical and the director- 
field which minimizes the free energy must be found in the class of continuous solutions 
of the bulk Euler-Lagrange equations. More recently Pergamenshchik [ 121 reached 
the same conclusion on the basis of better founded physical arguments. The main idea 
of Pergamenshchik is that the presence ofa strong subsurface distortion is an artefact of 
theory due to the fact that the theory consists in a power expansion of the free energy 
closed at a finite order. He shows that the truncation procedure at any finite order 
automatically produces a solution for the director-field which is characterized by a 
strong subsurface distortion. According to Pergamenshchik, a complete resummation 
over all the higher order terms should bound the free energy from below in such a way 
that director distortions with very short characteristic length are no longer possible. In 
order to clarify this point of view, Pergamenshchik considers a simple model of surface 
anchoring which does not allow for a subsurface strong deformation. He shows that, if 
this surface potential is expanded in terms of the surface derivatives up to a finite order, 
the same mathematical problems related to K , ,  occur: in particular, the free energy 
becomes unbounded from below. From this case, Pergamenshchik infers that 
truncation of the free energy expression at  any finite order automatically produces 
unphysical strong subsurface distortions also in the case of the K I 3  elastic constant, 
whilst a complete resummation over all higher order terms should eliminate any 
subsurface strong distortion. Therefore he suggests that the true director-field must be 
found in the class of continuousfunctions which minimize the standard first order elastic 
free energy. 

The previous argument is stimulating, but not conclusive. In fact, the analysis of 
simple models of microscopic molecular interactions in a NLC shows that, near the 
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interface, due to the symmetry breaking, it is actually possible that the uniform director 
orientation does not represent a minimum of free energy if the director at the surface is 
tilted at an angle 8 # 0 or (3 # 4 2 .  Under these conditions, there are sound physical 
arguments to expect that a strong subsurface director distortion actually occurs within 
a few molecular layers. Note that a similar strong distortion has been found in some 
experimental cases [ 131. Therefore we cannot exclude that subsurface strong 
distortions really occur close to the interfaces of a NLC. Finally, we notice that 
presently there is no consensus over whether the K,, term in the free energy exists at all 
[14]. Therefore, the problem of K,, is still open and new theoretical and experimental 
investigations are needed. 

In a recent paper, Pergamenshchik et al. [lS], analyse the Frkedericksz transition 
for a NLC layer in a magnetic field using the theoretical approach of [12]. They found 
that, if the KI3 elastic constant is greater than K3,/2, the director-field should exhibit 
an unusual parity-breaking conjguration and a spontaneous bulk distortion should occur 
also in the absence of a magneticjeld ifthe thickness is lower than a critical value d,. Note 
that a spontaneous bulk director distortion was predicted some years ago by 
Madhusudana et al. 1161, for a conical anchoring at the interfaces by using the same 
theoretical procedure of [l2]. If IK131 is lower than K&, the KI3 elastic constant only 
modifies the Frkedericksz threshold field and no parity breaking configuration is 
possible. 

In the homeotropic case, the fourth order elasticity predicts a variation of the 
Frkedericksz threshold field which corresponds to an apparent decrease of the surface 
anchoring potential, but no spontaneous bulk distortion. A similar behaviour is expected 
in the case of conical degenerate anchoring at both the interfaces [17]. 

According to Pergamenshchik et al. [lS], the experimental evidence of a 
spontaneous deformation, or of parity breaking director configurations, could give 
strong support to the analysis of [12]. However, to the best of our knowledge, these 
anomalous parity breaking director distortions have never been observed, although a 
lot of experiments concerning the Frkedericksz transition have been performed. This 
negative result could be interpreted as the experimental evidence either that the KI3 
constant for the NLC samples investigated so far by this experimental method is never 
larger than K,,/2, or that the Pergamenshchik method for calculating the bulk 
director-field is not correct. 

In the present paper, we assume that lKl31<K3J2 and we pose the question 
whether effects related to a finite value of K I 3  can be experimentally observed. 
We propose two simple experimental measurements for which the Barber0 and 
Pergamenshchik models predict different experimental results. Therefore, these 
experiments should supply a direct test for the validity of the two different theoretical 
approaches. 

2. Threshold of the Frkedericksz transition 
2.1. Predictions of the Pergamenshchik model 

Consider a NLC layer of thickness d, sandwiched between two parallel plates in the 
presence of a magnetic field H oriented along the x axis parallel to the plates (see figure). 
We suppose that the anchoring of the director at the two interfaces is along the z axis, 
perpendicular to the plates (homeotropic anchoring). This is just the geometry analysed 
in [lS] and [S]. Here we consider the case K3,>2KI3 for which no spontaneous 
distortion is predicted. Let xyz  be an orthogonal reference system with the origin at the 
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I 

f ‘ NLC X 

Schematic view of a nematic LC layer sandwiched between two parallel plates. Here d is the 
thickness of the layer, 0 = H(z) is the angle between the director n and the orientation of the 
easy axis, and H is the magnetic field. 

centre of the layer. By neglecting second order elasticity, the free energy (per unit area) 
of this system is given by [lS] 

[K,3p2(Q)e12 - x a H 2  sin2 01 dz F”=Z s”’ - d / Z  

+ W(8,)+ W(02)-~K,3(O;sin28,-@l sin28,), (1) 

where P(H)= (1 + sin2 8)’/’, q = ( K ,  , - K 3 3 ) / K 3 3  is the relative anisotropy of 
elastic constants. K , , ,  K , ,  and K13 are elastic constants, xa is the anisotropy of 
diamagnetic susceptibility, H is the intensity of the magnetic field, 0=  0(z) is the angle 
between the director and the easy axis z ,  W(0) is the anchoring energy function (assumed 
to be the same on both interfaces), the primes denote differentiation with respect to z 
and the subscripts 2, 1 correspond to quantities measured at the surfaces z = d/2 and 
z = - d/2, respectively. In typical NLC, q < 0. The exact functional dependence of W(0) 
is not known, but it is usually assumed to be given by the Rapini form [l8] 
W(8)= Wsin’ 812, where W is the anchoring energy coefficient. This functional 
dependence is not rigorous and there are some experimental results [19-221 which 
indicate that the true anchoring energy is not represented by the Rapini form. It should 
be emphasized that assumptions concerning the functional dependence of W(0) on the 
polar angle 8 can greatly affect any possible measurement concerning the K , ,  elastic 
constant. Therefore, an unambiguous measurement of K 13 requires that no a priori 
assumption on W(0) is made. We will discuss in detail this important point in appendix 
A .  For this reason, we restrict our attention to the special case where the surface polar 
angles 8, and O2 are very small and thus the anchoring energy is well represented by its 
parabolic approximation near the equilibrium angles 8, = 0 and e2 = 0 

W 
2 

W(0) = - 0 2 ,  

where W is the anchoring energy coefficient. Note that the conditions 8<< 1 is always 
satisfied at the threshold of the Frtedericksz transition. 

By using the procedure outlined in [12], Pergamenshchik et al. [lS], calculated the 
threshold field for the Frtedericksz transition which is given by the implicit equation 
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where u = d/25,  where 5 is the magnetic coherence length. In the limit of strong enough 
anchoring (Wd>> K,,), equation (3) becomes 

where H ,  = 7 1 / d ( K 3 3 / ~ a ) 1 1 2  is the Frkedericksz threshold field for strong anchoring 
(W= co) and where we have defined the eRxtive extrapolation length 

with X = K , , / K , , .  For R=O, Leff reduces to the ordinary extrapolation length 
Lext= K 3 J W  Therefore, as far as the Freedericksz threshold is concerned, the effect of 
the K13 elastic coefficient is equivalent to a renormalization of the anchoring energy 
coefficient W Note that, although the Hinov and Pergamenshchik approaches are 
based on the same assumption that the director-field must satisfy the Euler-Lagrange 
equation also at the two boundaries, equation (3) and equation (4) do not coincide with 
Hinov’s results (equation (43) in [ 1 O]), since Hinov boundary conditions differ crucially 
from those proposed by Pergamenshchik (see the discussion in the note (3 1) of [ 123). In 
particular, the Hinov solution for the director-field does not correspond to a minimum 
of the free energy in the class of continuous functions which solve the bulk Euler- 
Lagrange equations. 

2.2. Predictions of the second order elasticity 
The equilibrium solution for the director-field, as predicted by the second order 

elastic theory, exhibits a strong distortion near the two interfaces superposed to a 
standard long range distortion in the bulk. By neglecting surface contributions of 
higher order in the surface derivatives, Barber0 and Strigazzi [8] found that the 
threshold field is still given by equation (3) and (3 a), but with a different definition of the 
effective anchoring energy coefficient and of the extrapolation length. In particular, Leff 
becomes (in the homeotropic case) 

K 3 3  

Kff (1 - R)’ 
[ w- ( K 3  3 R 2 / 4 1  Leff =-, with We,, = ( 5 )  

and where 6 is the characteristic length of the strong subsurface distortion which is of 
the order of a few molecular lengths and is given by 6 = (K* /K3 , ) l i 2 ,  where K* is the 
second order elastic constant. As in the previous case, the main effect of K13 is a 
renormalization of the anchoring energy coefficient. 

We notice that measurement of the Freedericksz threshold field alone does not 
allow one to distinguish between the two previous models, since this measurement 
gives only the effective anchoring energy and thus, the parameters Wand R cannot be 
obtained separately. However we will show that it is possible to discriminate 
experimentally between the two models if one (or some) more independent 
measurement(s) is (are) made on the same system. In the following 4 we discuss the 
predictions of the two models in the limiting case of high magnetic fields ( H > > N , ) .  

3. Behaviour in high magnetic fields (H>>H,) 
3.1. Predictions of the Pergamenshchik model 

For H>> H , ,  the characteristic length of the director distortion close to the interlaces 
of the layer is ( = ( K , J x , H ~ ) ’ / ~  << d .  Under these conditions, e(0) x 71/2 and el(0) x 0 and 
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812 S. Faetti 

the bulk director distortion which minimizes the functional F ,  of equation ( 1 )  is easily 
found to satisfy the following equation [semi-infinite nematic layer] 

dO cos0 
-= +- 
d z  - M e ) '  

where the signs + and - refer to the regions ZE[ - d/2,0]  and ZE[O, + d /2] ,  respectively. 
By substituting equation (6) in equation (1) with d1 = 0, and tl; = - 19, (this symmetric 
solution is correct in our hypothesis that K ,  < K3,/2 [ 1 5 ] ) ,  after some straightforward 
calculations we find 

sin282cos0, . (7) I F ,  = 2  [xaH2 ~ ~ " z  (COS' 0 - i )  dz + W(0,)+- Kl3  

2tP(Q,) 

By using equation (6) and the boundary conditions e(0) = 71/2 and d( + 4 2 )  = 0,, the 
integral in equation (7) gives 

where q < O  and F ,  is a constant contribution which does not depend on the surface 
angle 8,. In the limit of rather strong anchoring (L,,, << 5, 8, << I), equation (8) can be 
expanded up to the second order in the small angle 0,: 

F ,  = F ,  -+ [ 1 - R]O, + We:. (9 )  
4 

The equilibrium surface angle, which minimizes the free energy per unit surface F,, is 
given by 

where we have defined the cocfficient y = L,,,( 1 - R)/( 1 - 2 R )  and where Leff is given by 
equation (4). Note that our analysis is made on the hypothesis that R < l j2  and, in this 
case, equation (10) does not exhibit divergences. For R >  1/2, the analysis of the 
director-distortion is different [ l 5 ] .  Equations (3) and (10) suggest that, if the 
Pergamenshchik method is correct, the surface-like elastic constant K can be 
obtained by measuring the FrCedericksz threshold field and the surface director angle 
in the high magnetic fields limit on the same nematic LC layer. Both measurements can 
be performed by using standard optical or capacitive methods 119-223. The 
measurement of the threshold field H c  (equations (3) and (3 a)) allows one to obiain the 
effective extrapolation length Leff, if the thickness d and the material parameters K,, 
and xa are known. Then, by measuring the surface director angle 0, for high enough 
magnetic fields, and by using equation (lo), we can obtain the experimental value of the 
coefficient y and, thus, the unknown parameter 

We should remember that our theoretical calculations have been made under the 
assumption that R < 1/2 and, thus, equation (1 1) is correct for 1/2 < y/L,,, < co, where 
equation (1 1) represents a monotonically increasing function of y/L,,,. It is important to 
emphasize that equation (11) has. been obtained by making no a priori assumption 
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Experimental method to measure K 1 3  813 

concerning the functional dependence of the anchoring energy function W(8) and, thus, 
it is a rigorous theoretical result if the Pergamenshchik procedure is correct. 
Furthermore, the validity of the approximation given by equation (2) can always be 
directly checked in the experiment. In fact, this approximation is well justified as far as 
the experimental value of the surface director angle 82 is found to be proportional to the 
applied magnetic field H as predicted by equation (10). 

In the following sections we will show that the Barbero-Strigazzi model of second 
order free energy gives a completely different behaviour if R#O and, thus the 
measurement of both the Freedericksz threshold and the surface director angle for high 
enough magnetic fields can represent a simple test of consistency of the two alternative 
theoretical approaches. 

3.2. Predictions of the second order elasticity 
The second order free energy contains 35 second order elastic constants. This makes 

the utilization of this expression impractical in the general case. However, in the limit of 
small director angles, the second order elastic free energy reduces to only one bulk 
elastic term characterized by the second order elastic constant K * .  In the case of high 
magnetic fields (H>>H,), the polar director angle in the bulk becomes very close to the 
value 4 2  and thus, in principle, one should retain all 35 second order elastic constants. 
However, the analysis given in [8] shows that second order terms give a relevant 
contribution to  the free energy only in a very thin subsurface layer of thickness 
6 = (K*/K3,)’’2, which is expected to be comparable with a typical molecular 
dimension (20A<<5). Therefore, if we restrict our attention to the case of small surface 
tilt angles (as in the previous discussions), the director angle is very small in the whole 
transition layer where the second order elasticity plays a relevant role. In the subsurface 
layer near the upper surface of the NLC layer, the bulk Euler-Lagrange equation for 
the director angle is given by the linearized equation [8] 

(12) 
8 &yv - e,, -~ = 0 
t2 ’ 

where the superscript IV and primes denote the fourth and second derivatives with 
respect to z ,  respectively, and 6 is given by 

At the upper surface, the solution of equation (12) must satisfy the boundary conditions 
P I  

and 

d28’;-RB2=O. 

The general solution of equation (12) is given by the superposition of the usual long 
range distortion with characteristic length z 5 and a strong subsurface distortion with 
characteristic length % 6 << <. This solution is 

8 ( z ) = A e x p ( 1 2 x ) + B c o s I , x + C s i n I , x ,  (1 6) 
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814 S .  Faetti 

where 

and 

and where x=z-d/2.  Substituting equation (16) in equations (14) and (15) with 
A l  z 115, A 2  z IjS and A1 <<A2,  we obtain 

The solution (16) holds within the thin subsurface layer of thickness h given by a few 
characteristic lengths 6(S < h << 5:). Behind this layer, the second order elasticity becomes 
completely negligible (S20'"<< 0") and the director-field must satisfy equation (6). 
Therefore the value of the unknown coefficient C can be obtained by imposing that the 
subsurface director field given by equation (1 6) satisfies equation (6) at z = 4 2 -  h. For 
6<h<<< we find 

Then, substituting equation (19) in equation (6) with 0(d/2-h)<< 1,  we find C =  - 1 
which, when substituted in equation (18), gives 

In order to compare the high magnetic field case with the threshold-field condition, 
we must define the meaning of 'surface director angle' in the context of a macroscopic 
theory. According to standard models of the surface anchoring, the 'surface director 
angle' has to be considered as the limit for z+ +d/2 of the bulk slow director distortion, 
rather than the true surface angle (see, for instance (24) and (25)). As a matter of fact, 
both light transmission and capacitive methods are practically insensitive to director 
distortions which occur on a few molecular layers below the surface. In this context, the 
'macroscopic' surface angle is given by 

where y = Lcff and Leff is the fourth order effective extrapolation length defined in 
equation (5). Equations (21) and (3) ,  with Leff given by equation (5 ) ,  are formally 
coincident with those which are obtained by using the Frank elastic energy without the 
K contribution, but assuming that the surface anchoring energy is W** in place of W. 
Therefore: according to the second order elastic theory, the main effect of K13 is a 
renormalization of the anchoring energy coefficient and of the extrapolation length (see 
equation (5)). The same conclusion has been recently reached by Barber0 et al. [9], who 
generalized equation ( 5 )  by accounting for the space variation of elastic constants and 
for the symmetry breaking at the interfaces. According to  the theoretical expressions 
given in equations ( 3 )  and (22), we see that if we measure the extrapolation length Leff by 
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Experimental method to measure K13 815 

the threshold field (equations ( 3 )  and ( 3  a))  and the experimental y coefficient defined 
in equation (21) by measuring the surface angle versus the magnetic field, we must 
find y = I,,,,. By substituting this result in equation (1 1) we see that it is equivalent to 
K13=0.  

Similar results can be obtained in the case where the surface interactions produce a 
homogeneous planar alignment of the director along the x-horizontal axis and the 
magnetic field is oriented along the z axis. In the latter case, equations (3 ) ,  (4), (5),  (10) 
and (21) still hold if we make the substitutions R+ - R and K33-+Kll .  

4. Discussion and conclusions 
In the previous sections we have seen that if the Pergamenshchik conjecture is 

correct, the simultaneous measurement of the effective extrapolation length by means 
of the Freedericksz threshold and of the y-coefficient, which relates the surface angle to 
the magnetic coherence length 5, allows us, in principle, to measure R and thus the K , ,  
elastic constant through equation (11). On the other hand, if the predictions of the 
second order theory are correct, the same measurement should give a vanishing value 
of the right term in equation (1 1) and thus an apparent zero value of K, ,  in agreement 
with the main conclusions of [9]. These results have been obtained by making no 
special assumption about the anchoring energy function and, thus, they can be 
considered as rigorous theoretical results (see appendix A). Furthermore, we remark 
that the measurements proposed here are performed on the same nematic LC layer and 
in the same region of the sample. This is an important requisite to obtain unambiguous 
results on the value of K13. In fact, under normal experimental conditions, it is very 
difficult and may be impossible to obtain the same anchoring energy values at different 
points in a same sample. The possible cases are two in number: 

(i) The measured value of the right-hand side of equation (11) is found to be 
different from zero. In this case, we could infer that the second order theory in 
the present form is not able to describe in a satisfactory way the main 
experimental results. Therefore, this experimental result should give some 
support to the Pergamenshchik conjecture. 

(ii) The measured value of the right-hand side of equation (1 1) is zero (within the 
experimental accuracy). In this case, the possible interpretations of the 
experiment are either that the K , ,  elastic coefficient is zero or that the second 
order theory is correct. Theoretical calculations of K , ,  seem to indicate that 
K , ,  should be different from zero and of the same order of magnitude as other 
first order elastic constants. Therefore this experimental result should give 
strong support to the main consequences of the second order elastic theory, 
according to which the main effects of K ,, can be virtually accounted for by a 
renormalization of the anchoring energy potential. However, since in this case 
the contribution to the anchoring energy comes essentially from a very thin 
interfacial layer, equation ( 5 )  has only a semiquantitative character (higher 
order terms in the free energy may not be negligible) and a microscopic model 
of surface interactions is needed to obtain a more accurate value for the 
effective anchoring energy coefficient We,,. 

As shown in previous sections, a very important condition to obtain unambiguous 
theoretical results is that the surface polar angle is very small-also in the high 
magnetic field limit- so that only the parabolic region of the surface potential is 
explored. On the other hand, in a real experiment, the surface angle cannot become too 
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small if we want to avoid large experimental errors. Therefore, one must reach some 
sort of compromise. Possible suitable values of the experimental parameters should be 
Leff  z 1/20 d and d/30 < 5 < d/6. These conditions can be satisfied by a proper choice of 
the kind of surface treatmcnt, the intensity of the magnetic field, the thickness of the 
nematic layer and the temperature. In this experiment, the greater experimental error is 
related to the measurement of the extrapolation length by means of the Frkedericksz 
threshold. Due to the relative large uncertainty of the elastic ( z 3  per cent) and 
magnetic ( z  3 per cent) constants of the NLC given in the literature, the maximum 
accuracy on the extrapolation length measured by the threshold field for Leff z 1/20 d 
can be estimated to be of the order of 30 per cent. A better accuracy should be obtained 
by measuring directly the threshold field H ,  in high anchoring conditions, for instance 
by repeating the same measurement for a NLC cell with a much higher thickness in 
such a way that Leff/d<< 1. Another parameter which should be measured with a very 
high accuracy is the thickness d of the NLC layer [19]. By assuming that the 
experimental uncertainty on H ,  and on H ,  is 0.5 per cent [19], we can estimate a 
relative accuracy on the experimental value of the extrapolation thickness of z 10 per 
cent (if L e f f z d / 2 0 ) .  The obtainable accuracy on the experimental value of the y 
coefficient (y = Q,<) measured by using high precision light transmission methods [20] 
can be estimated to be FZ 5 per cent. The relative error on the parameter R of equation 
(11) is 

So far, no experimental evidence for symmetry breaking distortions or  spontaneous 
distortions in NLC layers has been reported in the literature, both in the case of planar 
and homeotropic alignment. This seems to indicate that - 1/2< R < l j2  [lS] and thus 
3/4 < y/Leff < oc. Equation (22) shows that the error A R  greatly increases for y/Leff  < 1, 
corresponding to R < 0. In the case R < 0, the error greatly reduces if we make the same 
kind of measurcmcnts by studying the Frtedericksz threshold for a homogeneous 
planar alignment where all previous equations still hold if we make the substitution 
R + - R  and K 3 , + K l l .  Therefore, to estimate the error on R ,  we can restrict 
consideration to the case 0 < R < 112 which corresponds to 1 < y/Leff < co. In this case, 
the maximum error AR,,, is expected for thc casc y/Leff  = I ( R  =O), whilst a vanishing 
error AR is expected for y/L,,,+oo(R+1/2). By assuming the relative errors 
ALeff/Leff ~ 0 . 1  and Ay/Leff  ~ 0 . 0 5 ,  the maximum error is AR,,, =0.15. 

In principle, the same kind of measurement should also be performed by using an 
electric field in place of the magnetic field. However, electric field interactions with 
nematic LC are much more complex than magnetic interactions. In particular, many 
different effects such as ordoelectricity, flexoelectricity, surface polarization, ionic 
electric conduction, etc., can influence experimental results and generate some 
ambiguity as far as the interpretation of experimental results is concerned. 

We finally remark that an experimental measurement of K , ,  has been recently 
performed by Madhusudana and Pratibha by using a hybrid nematic layer of the NLC 
PCH-7 in the presence of a magnetic field [16]. These authors analysed the 
experimental results by using the Pergamenshchik procedure and found that their 
results gave a value of K , ,  comparable with the other elastic constants K,, and K l l .  
According to our previous discussion, this experimental result could be interpreted as 
the experimental evidence that the predictions of the fourth order elastic theory are not 
correct [S, 91. However, to obtain their experimental results, the authors explicitly 
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assume that the surface anchoring energy follows the Rapini-Popoular expression. 
This assumption is not well justified, since it has been found that the true anchoring 
potential has often a more complex shape [19-221. In the appendix A we will show that 
the measured value of K,,  can be greatly affected by this assumption. Therefore any 
experimental measurement of K , ,  which makes use of a priori hypotheses on the 
functional form of the anchoring potential is intrinsically ambiguous. 

We acknowledge M. Nobili for interesting discussions and critical reading of the 
manuscript, V. M. Pergamenshchik for sending a preprint of his paper concerning K1, 
[ 121 and Minister0 della Pubblica Istruzione (Italy) and Consiglio Nazionale delle 
Ricerche (Italy) for financial support. 

Appendix A 
In this appendix we show that an a priori choice of the surface anchoring function 

automatically induces wrong theoretical and experimental results concerning the K 
elastic constant. For the sake of simplicity we consider the simple case of the high 
magnetic field limit and,make the simplifying assumption of isotropic elastic constants 
( K ,  = K,, = K).  This assumption does not modify our main conclusions, but only 
simplifies the mathematical analysis. Under these assumptions the free energy per unit 
surface area is 

(A 1) 
2K 
5 

F ,  = F ,  - - [ 1 - R cos2 8,] sin 8, + 2W(8,). 

The surface free energy is minimized if 

K cos O2 W(0,) - 
l [( 1 + 2 R )  - 3R (30s’ 8,] ’ 

where W’(0,) denotes the derivative of W(8,) with respect to the surface polar angle 8,. 
For R =0, equation (A 2) reduces to the well-known result given by the Frank elastic 
theory 

The question is the following: is it possible to measure R utilizing equation (A2) if the 
functional dependence of the anchoring potential W(8,) is not known? The answer to 
this question is negative. In fact we can always define an effective anchoring potential 
Kff(02) by putting 

By symmetry arguments we know that, if the surface is not ferroelectric, W(8,) 
must be a function of cos2 O,, that is an even function of cos 8,. This means that W(8,) 
=y(8,) sin 8,, where g(O,) is an odd function of cos 0,. Therefore Weff(&), given by 
equation (A 4), is still an even function of cos O,,  since 

d e ,  = weff(COS2 e2). g(8,) sin 8, 
w,ff(ez)= s [( 1 + 2 R ) -  3R cos’ 8,] 
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Note that Weff(62) is still consistent with the general expression which is expected for a 
surface anchoring potential. Therefore, from this simple case, we infer that the effect of a 
finite value of the coefficient R can be simulated by assuming a different form for the 
surface anchoring potential. This means that, in this case, one cannot find a correct 
experimental value for the R parameter and thus for the surface-like elastic constant 
K if the form of the anchoring function W(6,) is not known. In fact, the main effect of 
this elastic constant, is a renormalization of the unknown anchoring energy function. In 
order to clarify this point further, consider the particular case where R=O, but the 
surface anchoring potential is not represented by the simple Rapini-Popoular form. In 
this case, if one attempts to fit the experimental results by assuming the Rapini form 
W(02)=Wsin202/2 for the anchoring potential and an unknown value of R, an 
experimental value of R which is different from zero can automatically be obtained. 
Otherwise, we notice that the analysis of experimental data under the assumption R = O  
can give deviations from the Rapini potential also in the case where the true surface 
potential is of the Rapini form. This means that all previous experimental measure- 
ments of the polar anchoring energy functions [19-221 should be fully revised if R f O  
and the Pergamenshchik procedure is correct. Although our analysis concerns only a 
special case (high magnetic fields), we think that our main results can be generalized to 
most experimental conditions. Therefore, we think that an unambiguous measurement 
ofthe anchoring energy potential should always be performed by looking at the case of 
small surface angles for which the anchoring energy function has the known parabolic 
shape of equation (2). 
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